Comparison of the Falling Drop Method to Existing Hemoglobin Methods

Tim R. Randolph, PhD, MT(ASCP)
Associate Professor
Department of Clinical Health Sciences
Doisy College of Health Sciences
Saint Louis University

What is Anemia?

- Definition
 - Reduced oxygen carrying capacity of the blood

- Causes
 - Nutritional deficiency (vitamins [B12/folate], iron)
 - Increased utilization of nutrients (infections, pregnancy, growth)
 - Inherited conditions (thalassemia, hemoglobinopathies, enzyme deficiencies, membrane defects, porphyrias)
 - Autoimmune hemolytic anemias (ITP - IgG, IgM)
 - Somatic mutations
 - Aplastic Anemia, Congenital Dyserythropoietic Anemia, Paroxysmal Nocturnal Hemoglobinuria
 - Malignancies (leukemias, metastatic malignancies)

Symptoms of Anemia

- Mild Anemia
 - Weakness, fatigue, headache, pallor

- Moderate Anemia
 - Dyspnea, tachycardia, dizziness, irritability

- Severe Anemia
 - Incapacitating fatigue
 - Cognitive deficits
 - Cardiac defects (MI, CHF)
 - Low birth weight
 - Preterm birth
 - Risk of maternal or neonatal mortality

Prevalence of Anemia Worldwide

- Anemia affects 25% of the world’s population
- Underdeveloped countries are more affected
 - All deaths from Iron Deficiency Anemia worldwide
 - 1.4% in North America
 - 71% in Africa and parts of Asia
 - Link between anemia and poverty
 - Nutritional deficiencies
 - Increase in parasitic and bacterial infections
 - Blending and increased utilization
 - Haiti is the poorest country in the Northern and Western hemispheres
 - In 2017, Haiti was ranked the 17th poorest country in the world

How is Anemia Measured

- RBC
 - Automated CBC
 - Manual RBC count

- Hematocrit
 - Automated CBC (calculated from RBC and Hb)

- Hemoglobin
 - Automated CBC (spectrophotometric)
 - POC instruments

Limitations to Modern Hb Measurement in Haiti

- Cost
 - Instrument
 - Reagents
 - QC
 - Electricity

- Stable and reliable electricity
 - CBC Instruments
 - Climate control
 - Refrigeration

- Adequate training of lab staff
- Instrument maintenance and repair
Problem

- Anemia is prevalent worldwide
- More prevalent in underdeveloped countries
- Modern methods are expensive, complex, electricity dependent
- Some Haitian labs do not have any electricity for even microhematocrit
- Sickle Confirm requires a Hb measurement to perform
- Need Hb method that is cheap, fast, easy and electricity independent
- Falling Drop Method

Falling Drop Method

- Principle
 - The rate of descent of a drop of blood down a column through a density gradient is proportional to the hemoglobin content in the drop of blood
- Variables to consider
 - Column size (length and diameter)
 - Vertical positioning of column
 - Density gradient solution (inert and dynamic)
 - Blood drop delivery system (reproducible)
 - Blood drop integrity
 - Anticoagulant used in blood collection (oxalate, citrate, EDTA, heparin)
 - Linear relationship between descent time and Hb content
 - Accuracy
 - Reproducibility
 - Reagent stability

Materials and Methods

- Samples
 - 20 blood samples from healthy, IRB consented, subjects
 - One EDTA tube for all Hb testing except the falling drop method
 - One-potassium oxalate/sodium fluoride for the falling drop method
 - Each sample was diluted 1:2 in autologous plasma for a total of 40 samples
- Falling Drop Set-up
 - Six-61cm glass columns with 10mm inner-bore diameter
 - Start/stop markings at 49.5cm apart
 - Modified, universal ESR rack to hold tubes
 - Modified pipette tips at mouth of column to stabilize blood drop delivery
- Density Solution
 - 4.58% solution of copper sulfate pentahydrate with specific gravity of 1.015

Materials and Methods

- Falling Drop Method
 - A 44uL drop of blood collected in potassium oxalate/sodium fluoride is applied to the surface of the copper sulfate in the column through a modified pipette tip to stabilize drop delivery
 - Descent time is measured between the markings (49.5cm)
 - Six trials per blood sample tested is applied to the column
 - Average of six trials is compared to the standard curve to determine Hb level
- Correlation of Falling Drop to Other Methods
 - Falling Drop method was correlated to:
 - Sysmex KX-21N, Hemocue 201+, Mission Plus Hb, and WHO Visual
 - Descriptive statistics: Mean and standard deviation
 - Inferential statistics: Correlation Coefficient (r) & Coefficient of Determination (r^2)

Hemoglobin Methods

Sysmex KX-21N Hemocue 201+ Mission Plus WHO Visual
Correlation of Sysmex to Other Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean Hb (g/dL)</th>
<th>Standard Deviation (g/dL)</th>
<th>Sysmex vs Other Methods</th>
<th>Correlation Coefficient (r)</th>
<th>Coefficient of Determination (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sysmex KX-21N</td>
<td>12.1</td>
<td>3.0</td>
<td>Sysmex KX-21N vs</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sysmex KX-21N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemocue 201+</td>
<td>12.0</td>
<td>2.9</td>
<td>Sysmex KX-21N vs</td>
<td>0.9959</td>
<td>0.9918</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hemocue 201+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission Plus</td>
<td>12.1</td>
<td>3.1</td>
<td>Sysmex KX-21N vs</td>
<td>0.9887</td>
<td>0.9775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mission Plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falling Drop</td>
<td>12.1</td>
<td>3.1</td>
<td>Sysmex KX-21N vs</td>
<td>0.9647</td>
<td>0.9306</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Falling Drop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO Visual</td>
<td>11.9</td>
<td>3.6</td>
<td>Sysmex KX-21N vs</td>
<td>0.9423</td>
<td>0.8879</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WHO Visual</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost Comparison Between 5 Hb Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Instrument Start Up Costs</th>
<th>Other Start Up Costs</th>
<th>Start up Costs</th>
<th>Reagents</th>
<th>Total Costs</th>
<th>Cost/Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sysmex KX-21N</td>
<td>$21,000</td>
<td>$250</td>
<td>$21,250</td>
<td>$250/500</td>
<td>$21,150</td>
<td>$0.50/test</td>
</tr>
<tr>
<td>Hemocue 201+</td>
<td>$500</td>
<td>$0</td>
<td>$500</td>
<td>$45/25</td>
<td>$545</td>
<td>$1.80/test</td>
</tr>
<tr>
<td>Mission Plus</td>
<td>$100</td>
<td>$0</td>
<td>$100</td>
<td>$60/50</td>
<td>$160</td>
<td>$1.20/test</td>
</tr>
<tr>
<td>Falling Drop</td>
<td>$0</td>
<td>$100</td>
<td>$100</td>
<td>$10/500mL=17 tests</td>
<td>$110</td>
<td>$0.59/test</td>
</tr>
<tr>
<td>WHO Visual</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$15/150 tests</td>
<td>$15</td>
<td>$0.10/test</td>
</tr>
</tbody>
</table>

Conclusions

- Sysmex is costly, requires stable electricity, maintenance and repairs
- Hemocue and Mission Plus are less expensive but require electricity or batteries
- Falling Drop and WHO Visual are power independent
- Falling Drop correlated well with Sysmex, Hemocue and Mission Plus
- WHO Visual was the least accurate and reproducible
- Falling Drop is a viable alternative to measure Hb w/o power

Thank you!!!!

Questions????